A Geometric Theory of Nonlinear Morphoelastic Shells

نویسندگان

  • Souhayl Sadik
  • Arzhang Angoshtari
  • Alain Goriely
  • Arash Yavari
چکیده

Many thin three-dimensional elastic bodies can be reduced to elastic shells: two-dimensional elastic bodies whose reference shape is not necessarily flat. More generally, morphoelastic shells are elastic shells that can remodel and grow in time. These idealized objects are suitable models for many physical, engineering, and biological systems. Here, we formulate a general geometric theory of nonlinear morphoelastic shells that describes both the evolution of the body shape, viewed as an orientable surface, as well as its intrinsic material properties such as its reference curvatures. In this geometric theory, bulk growth is modeled using an evolving referential configuration for the shell, the so-called material manifold. Geometric quantities attached to the surface, such as the first and second fundamental forms are obtained from the metric of the three-dimensional body and its evolution. The governing dynamical equations for the the body are obtained from variational consideration by assuming that both fundamental forms on the material manifold are dynamical variables in a Lagrangian field theory. In the case where growth can be modeled by a Rayleigh potential, we also obtain the governing equations for growth in the form of kinetic equations coupling the evolution of the first and the second fundamental forms with the state of stress of the shell. We apply these ideas to obtain stress-free growth fields of a planar sheet, the time-evolution of a morphoelastic circular cylindrical shell subject to time-dependent internal pressure, and the residual stress of a morphoelastic planar circular shell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Vibration of Functionally Graded Cylindrical Shells under Radial Harmonic Load

In this paper, the nonlinear vibration of functionally graded (FGM) cylindrical shells subjected to radial harmonic excitation is investigated. The nonlinear formulation is based on a Donnell’s nonlinear shallow-shell theory, in which the geometric nonlinearity takes the form of von Karman strains. The Lagrange equations of motion were obtained by an energy approach. In order to reduce the syst...

متن کامل

Nonlinear analysis of radially functionally graded hyperelastic cylindrical shells with axially-varying thickness and non-uniform pressure loads based on perturbation theory

In this study, nonlinear analysis for thick cylindrical pressure vessels with arbitrary variable thickness made of hyperelastic functionally graded material properties in nearly incompressible state and clamped boundary conditions under non-uniform pressure loading is presented. Thickness and pressure of the shell are considered in axial direction by arbitrary nonlinear profiles. The FG materia...

متن کامل

Non-Linear Analysis of Asymmetrical Eccentrically Stiffened FGM Cylindrical Shells with Non-Linear Elastic Foundation

In this paper, semi-analytical method for asymmetrical eccentrically stiffened FGM cylindrical shells under external pressure and surrounded by a linear and non-linear elastic foundation is presented. The proposed linear model is based on two parameter elastic foundation Winkler and Pasternak. According to the von Karman nonlinear equations and the classical plate theory of shells, strain-displ...

متن کامل

Comparison of Various Shell Theories for Vibrating Functionally Graded Cylindrical Shells

The classical shell theory, first-order shear deformation theory, and third-order shear deformation theory are employed to study the natural frequencies of functionally graded cylindrical shells. The governing equations of motion describing the vibration behavior of functionally graded cylindrical shells are derived by Hamilton’s principle. Resulting equations are solved using the Navier-type s...

متن کامل

Nonlinear geometric effects in mechanical bistable morphing structures.

Bistable structures associated with nonlinear deformation behavior, exemplified by the Venus flytrap and slap bracelet, can switch between different functional shapes upon actuation. Despite numerous efforts in modeling such large deformation behavior of shells, the roles of mechanical and nonlinear geometric effects on bistability remain elusive. We demonstrate, through both theoretical analys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016